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Abstract In this paper, we use a new class of generalized convex n-set functions, called (�,
ρ, σ , θ )-V-Type-I and related non-convex functions to establish appropriate duality theorems
for three parametric and three semi-parametric dual models to the primal problem. This work
extends an earlier work of Zalmai [Computer and Mathematics with Applications 43 (2002)
1489–1520] to a wider class of functions.
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1 Introduction

Consider the following multiple objective fractional subset programming problem:

Minimize:
(

F1 (S)

G1 (S)
,

F2 (S)

G2 (S)
, . . . ,

Fp (S)

G p (S)
,

)
(P)

Subject to: Hj (S) � 0, j ∈ m, S ∈ �n,

where �n is the n-fold product of the σ -algebra �of the subsets of a given set X , Fi , Gi,

i ∈ p ≡ {1, 2, . . . , p} Hj (S) � 0, j ∈ m ≡ {1, 2, . . . , m} , are real valued functions
defined on �n , and for each Gi (S) > 0, for each i ∈ p, for all S ∈ �n .

The point-function counterparts of (P) are known in the area of mathematical program-
ming as multiple objective fractional programming problems. These problems have been the
focus of intense interest in the past few years, which has resulted in numerous publications
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the reader may consult a fairly extensive list of references related to various aspects of frac-
tional programming in [29]. For more information about general multiobjective problems
with point-functions, the reader may consult [4, 26, 27].

In the area of subset programming, multiobjective problems have been investigated in
[15, 18], and multiobjective fractional problems in [15–17]. Much attention has been paid
to the analysis of optimization problems with set functions, for example, see Chou et al. [1],
Corley [2], Hsia and Lee [10, 11], Hsia et al. [12], Kim et al. [18], Lin [20–23], Liu [24],
Mazzoleni [25], Morris [28], Preda [30, 31], Preda and Minasian [32–34], and Zalmai [39–
41]. A formulation for optimization problems with set functions was first given by Morris
[28]. The main results of Morris [28] are confined only to set functions of a single set. Corley
[2] gave the concepts of a partial derivative and a derivative of real-valued n-set functions.
Chou et al. [1], Kim et al. [17, 18], Lai and Lin [19], Lin [20–23], Preda [30, 31], and Preda
and Minasian [32–34] studied optimality and duality for optimization problems involving
vector-valued n-set functions. For details, one can refer to Hsia and Lee [10, 11], Hsia et al.
[12], Kim et al. [17, 18], Lin [20–23], Mazzoleni [25], Mishra [27], Preda [30], Rosenmuller
and Weidner [35], Tanaka and Maruyama [37] and Zalmai [39–42].

Zalmai [42] introduced a new class of generalized convex n-set functions and then pre-
sented a number of parametric and semi-parametric sufficient efficiency conditions under the
assumptions introduced in [42] for a multiobjective fractional subset programming problem.
Moreover, three parametric and three semi-parametric dual models are given and appropriate
duality results are established under the aforesaid assumptions, in [42].

Starting from the methods used by Craven [3], Giorgi and Molho [5], Hachimi and Ag-
hezzaf [6], Hanson [7], Hanson and Mond [8], Jeyakumar [13] and Jeyakumar and Mond
[14], Mishra [26], Rueda and Hanson [36] and Ye [38], Preda and Minasian [34] defined
some new classes of scalar and vector functions called d-type-I, d-pseudo type-I and d-quasi
type-I for a multiobjective programming problem involving n-set functions and obtained a
few interesting results on optimality and Wolfe duality.

Recently, Hanson et al. [9] introduced a new class of functions called vector type-I and its
generalizations. Motivated by Hanson et al. [9], In this paper, we extend the work of Zalmai
[42] to the class of V-type-I and related functions. We present six dual models for (P). Three
parametric models whose forms and properties are based on the Theorems 2.1, 3.1–3.3 [42];
and three semi-parametric models whose structure and contents are motivated by Theorems
2.2, 4.1–4.3 [42]. In each case, we establish appropriate weak and strong duality theorems.
The paper is organized as follows. In Section 2, we recall the definitions of differentiability,
convexity and certain type of generalized convexity Type-I and related functions for n-set
functions, which will be used frequently throughout the sequel. In Section 3, we consider
a simple dual problem and prove weak and strong duality theorems under generalized (�,
ρ, σ, θ)-V-Type-I and related non-convex functions for a parametric dual model for (P).
In Sections 4 and 5, we formulate two general parametric dual models that are, in fact, two
families of dual problems whose members can readily be identified by appropriate choices
of certain sets and functions. In Sections 6–8, we discuss the semi-parametric counterparts
of the dual models presented in Sections 3–5.

Notice that, all these results are also applicable, when appropriately specialized, to the
following three classes of problems with multiple, fractional, and conventional objective
functions, which are particular cases of (P):

Minimize
S∈X

(
F1 (S) , F2 (S) , . . . , Fp (S)

)
(P1)

Minimize
S∈X

F1 (S)

G1 (S)
(P2)
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Minimize
S∈X

F1 (S) (P3)

where X (assumed to be nonempty) is the feasible set of (P), that is,

X = {
S ∈ �n : Hj (S) � 0, j ∈ m

}
.

2 Preliminaries

In this section we gather, for convenience of reference, a number of basic definitions that
will be used often throughout the sequel, and recall some auxiliary results.

Let (X,�,µ) be a finite atomless measure space with L1 (X,�,µ) separable, and let d
be the pseudometric on �n defined by

d (R, S) =
[

n∑
i=1

µ2 (Ri�Si )

]1/2

, R = (R1, R2, . . . , Rn) , S = (S1, S2, . . . , Sn) ∈ �n,

where � denotes the symmetric difference; thus, (�n, d) is a pseudo-metric space. For
h ∈ L1 (X,�,µ) and T ∈ � with characteristic function χT ∈ L∞ (X,�,µ), the integral∫

T hdµ will be denoted by 〈h, χT 〉.
We next recall the notion of differentiability and convexity for n-set functions. They were

originally introduced by Morris [28] for set functions, and subsequently extended by Corley
[2] for n-set functions.

Definition 2.1 A function F : � →R is said to be differentiable at S∗ if there exists DF (S∗)
∈ L1 (X,�,µ) ,called the derivative of F at S∗, such that for each S ∈ �,

F (S) = F
(
S∗)+ 〈

DF
(
S∗) , χS − χS∗

〉+ VF
(
S, S∗) ,

where VF (S, S∗) is o (d (S, S∗)) , that is, limd(S,S∗)→0VF (S, S∗)
/

d (S, S∗) = 0.

Definition 2.2 A function G: �n→R is said to have a partial derivative at S∗ =(
S∗

1 , S∗
2 , . . . , S∗

n

) ∈ �n with respect to its i th argument if the function F (Si ) = G(
S∗

1 , . . . , S∗
i−1,S

∗
i , S∗

i+1, . . . , S∗
n

)
has derivative DF

(
S∗

i

)
, i ∈ n; in that case, the i th par-

tial derivative of G at S∗ is defined to be Di G (S∗) = DF
(
S∗

i

)
, i ∈ n.

Definition 2.3 A function G: �n→R is said to be differentiable at S∗ if all the partial
derivatives Di G (S∗) , i ∈ n exist and

G (S) = G
(
S∗)+

n∑
i=1

〈
DGi

(
S∗) , χSi − χS∗

i

〉
+ WG

(
S, S∗) ,

where WG (S, S∗) is o (d (S, S∗)) , for all S ∈ �n .

It was shown by Morris [28] that for any triplet (S, T, λ) ∈ � × � × [0, 1] , there exist
sequences {Sk} and {Tk} ∈ � such that

χSk

w∗→ λχS\T and χTk

w∗→ λχT \S (2.1)

imply χSk∪Tk∪(S∩T )
w∗→ λχS + (1 − λ) χT , (2.2)
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where
w∗→ denotes the weak* convergence of elements in L∞ (X,�,µ) and S\T is the

complement of T relative to S. The sequence{Vk (λ)} = {Sk ∪ Tk ∪ (S ∩ T )} satisfying
(2.1) and (2.2) is called the Morris sequence associated with (S, T, λ).

It was shown in [2, 28] that if a differentiable function F :� → R is convex, then

F (S) � F (T ) +
n∑

i=1

〈
Di F (T ) , χSi − χTi

〉
, ∀ S, T ∈ �n .

Following the introduction of the notion of convexity for set functions by Morris [28] and
its extension for n-set functions by Corley [2], various generalizations of convexity for set
and n-set functions were proposed in [33].

For predecessors and point-function counterparts of these convexity concepts, the reader is
referred to the original papers where the extensions to set and n-set functions are discussed. A
survey of recent advances in the area of generalized convex functions and their role in devel-
oping optimality conditions and duality relations for optimization problems is given in [29].

For the purpose of formulating several dual models for (P) and proving various duality
results, in this study we shall use a new class of generalized convex n-set functions, called (�,
ρ, σ , θ )-V-Type-I and related non-convex functions, that will be defined later in this section.
This class of functions may be viewed as an n-set version of a combination of three classes
of point-functions:�-convex functions, type-I functions and V-invex functions, which were
introduced in [7, 14, 37].

Let S, S∗ ∈ �n, let the function F : �n → R p, with components Fi , i ∈ p, be differen-
tiable at S∗, let �(S,S∗; .) : Ln

1 (X,�,µ) → R be a sublinear function, and let θ : �n ×�n →
�n × �n be a function such that S �= S∗ ⇒ θ (S, S∗) �= (0, 0) .

Definition 2.4 The pair of functions (F, G)are said to be (�, ρ, σ , θ)-V-type-I at S∗if there
exist functions αi : �n × �n → R+\ {0} , i ∈ p, β j : �n × �n → R+\ {0} , j ∈ m, ρ ∈ R
and ρ ∈ R such that for each S ∈ �n , i ∈ p and j ∈ m,

Fi (S) − Fi
(
S∗) � �

(
S, S∗;αi

(
S, S∗) DFi

(
S∗))+ ρd2 (θ (S, S∗))

and

−G j
(
S∗) � �

(
S, S∗;β j

(
S, S∗) DG j

(
S∗))+ ρ̄d2 (θ (S, S∗)) .

Definition 2.5 The pair of functions (F, G)are said to be (�, ρ, σ , θ)-V-pseudo-quasi-type-I
at S∗if there exist functions αi :�n × �n → R+\ {0} , i ∈ p, β j :�n × �n → R+\ {0} ,

j ∈ m, ρ ∈ R and ρ ∈ R such that for each S ∈ �n , i ∈ p and j ∈ m,

�

(
S, S∗;

p∑
i=1

DFi
(
S∗)
)

�−ρd2 (θ (S, S∗))⇒
p∑

i=1

αi
(
S, S∗)Fi (S)�

p∑
i=1

αi
(
S, S∗)Fi

(
S∗)

and

−
m∑

j=1

β j
(
S, S∗)G j

(
S∗) � 0 ⇒ �


S, S∗;

m∑
j=1

DG j
(
S∗)

 � −ρ̄d2 (θ (S, S∗)) .

Definition 2.6 The pair of functions (F, G)are said to be (�, ρ, σ , θ)-V-quasi-pseudo-type-I
at S∗if there exist functions αi :�n ×�n → R+\ {0} , i ∈ p, β j : �n ×�n → R+\ {0} , j ∈
m, ρ ∈ R and ρ ∈ R such that for each S ∈ �n , i ∈ p and j ∈ m,
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p∑
i=1

αi
(
S, S∗)Fi (S)�

p∑
i=1

αi
(
S, S∗)Fi

(
S∗)⇒�

(
S, S∗;

p∑
i=1

DFi
(
S∗)
)

�−ρd2 (θ (S, S∗))

and

�


S, S∗;

m∑
j=1

Dg j
(
S∗)

 � −ρ̄d2 (θ (S, S∗)) ⇒ −

m∑
j=1

β j
(
S, S∗)G j

(
S∗) � 0.

Throughout this paper, we shall deal exclusively with efficient solutions of (P). We recall
that an S∗ ∈ � is said to be an efficient solution of (P) if there is no S ∈ � such that(

F1 (S)

G1 (S)
,

F2 (S)

G2 (S)
, . . . ,

Fp (S)

G p (S)

)
≤
(

F1 (S∗)
G1 (S∗)

,
F2 (S∗)
G2 (S∗)

, . . . ,
Fp (S∗)
G p (S∗)

)
.

In order to derive a set of necessary conditions for (P), we employ a Dinkelbach-type [4]
indirect approach via the following auxiliary problem:

(Pλ) Minimize
S∈�

(
F1 (S) − λ1G1 (S) , . . . , Fp (S) − λpG p (S)

)
,

where λi , i ∈ p, are parameters. This problem is equivalent to (P) in the sense that for par-
ticular choices of λi , i ∈ p, the two problems have the same set of efficient solutions. This
equivalence is stated more precisely in the following lemma whose proof is straightforward,
and hence, omitted.

Lemma 2.1 An S∗ ∈ � is an efficient solution of (P) if and only if it is an efficient solution
of (Pλ∗) with λ∗

i = Fi (S∗)
/

Gi (S∗) , i ∈ p.

Now applying Theorem 3.23 of [22] to (Pλ) and using Lemma 2.1, we obtain the following
necessary efficiency results for (P).

Theorem 2.1 Assume that Fi , Gi , i ∈ p, and Hj , j ∈ m,are differentiable at S∗ ∈ �n, and

that for each i ∈ p,there exists Ŝi ∈ �n such that

Hj
(
S∗)+

n∑
k=1

〈
Dk Hj

(
S∗) , χŜi

k
− χ∗

k

〉
< 0, j ∈ m,

and for each l ∈ p\ {i} ,

n∑
k=1

〈
Dk Fl

(
S∗)− λ∗

l Dk Gl
(
S∗) , χŜl

k
− χS∗

k

〉
< 0.

If S∗ is an efficient solution of (P) and λ∗
i = Fi (S∗)

/
Gi (S∗) , i ∈ p,then there exist

u∗ ∈ U = {
u ∈ R p: u > 0,

∑p
i=1 ui = 1

}
and v∗ ∈ Rm+ such that

n∑
k=1

〈 p∑
i=1

u∗
i

[
Dk Fi

(
S∗)− λ∗

i Dk Gi
(
S∗)]+

m∑
j=1

v∗
j Dk Hj

(
S∗) , χSk − χS∗

k

〉
� 0,∀ S ∈ �n,

v∗
j H j

(
S∗) = 0, j ∈ m.

The above theorem contains two sets of parameters u∗
i and λ∗

i , i ∈ p. It is possible to
eliminate one of these two sets of parameters, and thus, obtain a semi-parametric version of
Theorem 2.1. Indeed, this can be accomplished by simply replacing λ∗

i by Fi (S∗)
/

Gi (S∗) ,

i ∈ p, and redefining u∗ and v∗. For further reference, we state this in next theorem.
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Theorem 2.2 Assume that Fi , Gi , i ∈ p, and Hj , j ∈ m, are differentiable at S∗ ∈ �n,

and that for each i ∈ p,there exists Ŝi ∈ �n such that

Hj
(
S∗)+

n∑
k=1

〈
Dk Hj

(
S∗) , χŜi

k
− χ∗

k

〉
< 0, j ∈ m,

and for each l ∈ p\ {i} ,

n∑
k=1

〈
Gl
(
S∗) Dk Fl

(
S∗)− Fl

(
S∗) Dk Gl

(
S∗) , χŜl

k
− χS∗

k

〉
< 0.

If S∗ is an efficient solution of (P), then there exist u∗ ∈ U and v∗ ∈ Rm+ such that

n∑
k=1

〈 p∑
i=1

u∗
i

[
Gi
(
S∗) Dk Fi

(
S∗)− Fi

(
S∗) Dk Gi

(
S∗)]+

m∑
j=1

v∗
j Dk Hj

(
S∗) , χSk − χS∗

k

〉

� 0,∀ S ∈ �n, v∗
j H j

(
S∗) = 0, j ∈ m.

The form and contents of the necessary efficiency conditions given in Theorem 2.2 are
used by Zalmai [42] to derive a number of semi-parametric sufficient efficiency criteria as
well as for constructing various dual models for (P).

3 Dual model I

In this section, we consider the following dual problem:

(DI) Maximize λ = (
λ1, λ2, . . . , λp

)
subject to

�


S, T ;

p∑
i=1

ui [DFi (T ) − λi DGi (T )] +
m∑

j=1

v j DHj (T )


 � 0, ∀ S ∈ �n, (3.1)

ui �Fi (T ) − λi Gi (T )� � 0, i ∈ p , (3.2)

v j H j (T ) � 0, j ∈ m , (3.3)

T ∈ �n, λ ∈ R+, u ∈ U, v ∈ Rm+,

where �(S, T ; ·) : Ln
1 (X,�,µ) → R is a sublinear function. Throughout our discussion,

we assume that the functions Fi , Gi , i ∈ p, and Hj , j ∈ m,are differentiable on �n .We shall
introduce along the way some additional notations. For stating our first duality theorem, we
use the real-valued functions Ai (· ; λ, u) and B j (· , v) defined for fixed λ, u and v on �n

by

Ai (· ; λ, u) = ui [Fi (S) − λi Gi (S)] , i ∈ p,

and

B j (· , v) = v j H j (S) , j ∈ m.

Theorem 3.1 Let S and (T, λ, u, v) be arbitrary feasible solutions of (P) and (DI), respec-
tively, and assume that any one of the following sets of hypotheses is satisfied:
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(a) (i)
(
Ai (· ; λ, u) , B j (·, v)

) ∀ i ∈ p and j ∈ m, are (�, α, β, ρ, σ , θ)-V-pseudo-
quasi-type-I at T ;
(ii) ρ + σ � 0;

(b) (i)
(
Ai (· ; λ, u) , B j (·, v)

) ∀ i ∈ p and j ∈ m, are (�, α, β, ρ, σ, θ)-V-pseudo-pre-
strict-quasi-type-I at T ;
(ii) ρ + σ > 0;

(c) (i)
(
Ai (·; λ, u) , B j (·, v)

)∀ i ∈ p and j ∈ m, are (�, α, β, ρ, σ , θ)-V-prestrict-quasi-
strict-pseudo-type-I at T ;
(ii) ρ + σ � 0.

Then, φ (S) ≡
(

F1 (S)

G1 (S)
,

F2 (S)

G2 (S)
, . . . ,

Fp (S)

G p (S)

)
� λ .

Proof Let Sbe an arbitrary feasible solution of (P), then, by the sublinearity of �and (3.1),
it follows that

�

(
S, T ;

p∑
i=1

ui [DFi (T ) − λi DGi (T )]

)
+ �


S, T ;

m∑
j=1

v j DHj (T )


 � 0. (3.4)

(a) From (3.3) that − v j H j (T ) � 0, and hence,

−
m∑

j=1

β j (S, T )v j H j (T ) � 0,

which by virtue of second part of (i) implies that

�


S, T ;

m∑
j=1

v j DHj (T )


 � −σ d2 (θ (S, T )) . (3.5)

From (3.4) and (3.5), we see that

�

(
S, T ;

p∑
i=1

ui [DFi (T ) − λi DGi (T )]

)
� σ d2 (θ (S, T )) � −ρd2 (θ (S, T )) ,

where the second inequality follows from (ii). By first part of (i), the last inequality implies
that

p∑
i=1

αi (S, T ) ui [Fi (S) − λi Gi (S)] �
p∑

i=1

αi (S, T ) ui [Fi (T ) − λi Gi (T )]

which in view of (3.2) becomes

p∑
i=1

αi (S, T ) ui [Fi (S) − λi Gi (S)] � 0. (3.6)

Since uiαi (S, T ) > 0 for each i ∈ p , (3.6) implies that (F1(S) − λ1G1(S), . . . , Fp(S)−
λpG p(S)) � (0, . . . , 0), which in turn implies that

φ (S) ≡
(

F1 (S)

G1 (S)
,

F2 (S)

G2 (S)
, . . . ,

Fp (S)

G p (S)

)
� λ.

Proofs for part (b) and (c) are similar to that of part (a). ��
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Theorem 3.2 Strong Duality. Let S∗be a regular efficient solution of (P), let �(S, S∗;
DF (S∗)) = ∑n

k=1

〈
Dk F (S∗) , χSk − χS∗

k

〉
for any differentiable function F :�n → R

and S ∈ �n, and assume that ant one of the three sets of hypotheses specified in Theorem
3.1 holds for all feasible solutions of (DI). Then there exist u∗∈U and v∗∈Rm+ such that
(S∗, u∗, v∗) is an efficient solution of (DI) and the objective values of (P) and (DI) are same.

Proof By Theorem 2.1, there exist u∗∈U and v∗∈Rm+ such that (S∗, u∗, v∗) is an feasible
solution of (DI). That it is an efficient solution follows from Theorem 3.1. ��

4 Dual model II

In this section, we formulate a relatively more general parametric dual model by making use
of the partitioning scheme introduced as follows:

Let
{

J0, J1, . . . , Jq
}

be a partition of the index set m; thus, Jr ⊂m for each r∈ {0, 1, . . . , q},
Jr ∩ Js = φ for each r, s ∈ {0, 1, . . . , q} with r �= s, and

⋃q
r=0 Jr = m.

The duality model considered in this section has the form:

Maximize λ = (
λ1, λ2, . . . , λp

)
(DII)

subject to

�


S, T ;

p∑
i=1

ui [DFi (T ) − λi DGi (T )] +
m∑

j=1

v j DHj (T )


 � 0,∀ S ∈ �n, (4.1)

ui


Fi (T ) − λi Gi (T ) +

∑
j∈J0

v j H j (T )


 � 0, i ∈ p , (4.2)

∑
j∈Jt

v j H j (T ) � 0, t ∈ m , (4.3)

T ∈ �n, λ ∈ R p
+, u ∈ U, v ∈ Rm+,

where �(S, T ; ·) : Ln
1 (X,�,µ) → R is a sublinear function.

We show that (DII) is a dual problem for (P) by establishing weak and strong duality

theorems. In this section, we also use the notations �i (·; λ, u, v) = ui

[
Fi (S) − λi Gi (S) +∑

j∈J0
v j H j (S)

]
, i ∈ p and �t (S, v) = ∑

j∈Jt
v j H j (S) , t ∈ m.

Theorem 4.1 Weak Duality. Let S and (T, λ, u, v) be arbitrary feasible solutions of (P)
and (DII), respectively, and assume that any one of the following three sets of hypotheses is
satisfied:

(a) (i)
(
�i (· ; λ, u, v) , � j (·, v)

) ∀ i ∈ p and j ∈ m, are (�, α, β, ρ, σ, θ)-V-pseudo-
quasi-type-I at T ;
(ii) ρ + σ � 0;

(b) (i)
(
�i (· ; λ, u, v) , � j (·, v)

) ∀ i ∈ p and j ∈ m, are (�, α, β, ρ, σ , θ)-V-pseudo-
prestrict-quasi-type-I at T ;
(ii) ρ + σ > 0;
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(c) (i)
(
�i (· ; λ, u, v) , � j (·, v)

) ∀ i ∈ p and j ∈ m, are (�, α, β, ρ, σ , θ)-V-prestrict-
quasi-strict-pseudo-type-I at T ;
(ii) ρ + σ � 0.

Then, φ (S) ≡
(

F1 (S)

G1 (S)
,

F2 (S)

G2 (S)
, . . . ,

Fp (S)

G p (S)

)
� λ .

Proof Let S be an arbitrary feasible solution of (P). Then by the sublinearity of �and (4.1)
it follows that

�


S, T ;

p∑
i=1

ui [DFi (T ) − λi DGi (T )] +
∑
j∈J0

v j DHj (T )




+�


S, T ;

m∑
t=1

∑
j∈Jt

v j DHj (T )


 � 0. (4.4)

(a) Since v � 0, S ∈ � it follows from (4.3) that for each t ∈ m :
−
∑
t∈Jt

vt Ht (T ) = −�t (T, v) � 0,

and so

−
q∑

t=1

βt (S, T )�t (T, v) � 0,

which by virtue of second part of (i) implies that

�


S, T ;

q∑
t=1

∑
j∈Jt

v j DHj (T )


 � −σ d2 (θ (S, T )) . (4.5)

From (4.4) and (4.5), we see that

�


S, T ;

p∑
i=1

ui [DFi (T ) − λi DGi (T )] +
∑
j∈J0

v j DHj (T )


 � σ d2 (θ (S, T ))

� −ρ d2 (θ (S, T )) ,

where the second inequality follows from (ii). By virtue of the first part of hypothesis (i), the
above inequality implies that

p∑
i=1

αi (S, T ) �i (S, λ, u, v) �
p∑

i=1

αi (S, T ) �i (T, λ, u, v) . (4.6)

Since αi (S, T ) > 0, ui � 0, ∀i ∈ p, and (4.2) holds, we deduce from (4.6) that

p∑
i=1

αi (S, T ) �i (S, λ, u, v) � 0,

which simplifies to

p∑
i=1

αi (S, T ) ui [Fi (S) − λi Gi (S)] � 0.
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which is precisely (3.6). Therefore, the rest of the proof is identical to that of Part (a) of
Theorem 3.1.

Proofs of parts (b) and (c) are similar to that of part (a). ��

Remark 4.1 Note that Theorem 4.1 contains a number of special cases that can easily be
identified by appropriate choices of the partitioning sets J0, J1, . . . , Jq .

Theorem 4.2 Strong Duality. Let S∗be a regular efficient solution of (P), let �(S, S∗;
DF (S∗)) = ∑n

k=1

〈
Dk F (S∗) , χSk − χS∗

k

〉
for any differentiable function F :�n → R

and S ∈ �n, and assume that ant one of the three sets of hypotheses specified in Theorem
4.1 holds for all feasible solutions of (DII). Then there exist u∗∈U and v∗∈Rm+ such that
(S∗, u∗, v∗) is an efficient solution of (DII) and the objective values of (P) and (DII) are
same.

Proof By Theorem 2.1, there exist u∗∈U and v∗∈Rm+ such that (S∗, u∗, v∗ ) is an feasible
solution of (DII). That it is an efficient solution follows from Theorem 4.1. ��

5 Dual model III

In this section, we present another general parametric dual model for (P). It is again based
on the partitioning scheme employed in the previous section. The dual model can be stated
as follows:

Maximize λ = (
λ1, λ2, . . . , λp

)
(DIII)

subject to

�


S, T ;

p∑
i=1

ui [DFi (T ) − λi DGi (T )] +
m∑

j=1

v j DHj (T )


 � 0,∀S ∈ �n, (5.1)

Fi (T ) − λi Gi (T ) � 0, i ∈ p , (5.2)∑
j∈Jt

v j H j (T ) � 0, t ∈ m ∪ {0} , (5.3)

T ∈ �n, λ ∈ R p
+, u ∈ U, v ∈ Rm+,

where �(S, T ; ·) : Ln
1 (X,�,µ) → R is a sublinear function.

We show that (DIII) is a dual problem for (P) by establishing weak and strong duality theo-
rems. Let {I0, I1, . . . , Ik} be a partition of p such that K={0, 1, . . . , k}⊂Q={0, 1, . . . , q} ,

k < q,and let the function 
t (·, λ, u, v) :�n → R be defined for fixed λ, u and v by


t (S , λ, u, v) =
∑
i∈It

ui [Fi (S) − λi Gi (S)] +
∑
j∈Jt

v j H j (S), t ∈ K .

and �t (S, v) = ∑
j∈Jt

v j H j (S) , t ∈ m.
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Theorem 5.1 Weak Duality. Let S and (T, λ, u, v) be arbitrary feasible solutions of (P)
and (DIII), respectively, and assume that any one of the following three sets of hypotheses is
satisfied:

(a) (i)
(

t (· , λ, u, v) , � j (·, v)

) ∀ t ∈ K and j ∈ m, are (�, α, β, ρ, σ , θ)-V-strict
pseudo-quasi-type-I at T ;
(ii) ρ + σ � 0;

(b) (i)
(

t (· , λ, u, v) , � j (·, v)

) ∀ t ∈ K and j ∈ m, are (�, α, β, ρ, σ , θ)-V-pseudo-
prestrict-quasi-type-I at T ;
(ii) ρ + σ > 0;

(c) (i)
(

t (· , λ, u, v) , � j (·, v)

) ∀ t ∈ K and j ∈ m, are (�, α, β, ρ, σ, θ)-V-pre-
strict-quasi-strict-pseudo-type-I at T ;
(ii) ρ + σ � 0.

Then, φ (S) ≡
(

F1 (S)

G1 (S)
,

F2 (S)

G2 (S)
, . . . ,

Fp (S)

G p (S)

)
� λ .

Proof Suppose to the contrary that φ (S) ≤ λ .This implies that Fi (S)−λi Gi (S) � 0,∀ i ∈
p,with strict inequality holding for at least one l ∈ p . From these inequalities, non-negativity
of v, primal feasibility of S, and (5.2) it is easily seen that for each t ∈ K ,


t (S , λ, u, v) =
∑
i∈It

ui [Fi (S) − λi Gi (S)] +
∑
j∈J t

v j H j (S)

�
∑
i∈It

ui [Fi (S) − λi Gi (S)]

� 0

=
∑
i∈It

ui [Fi (S) − λi Gi (S)] +
∑
j∈Jt

v j H j (S) = 
t (S , λ, u, v)

and so ∑
t∈K

αt (S, T )
t (S , λ, u, v) <
∑
t∈K

αt (S, T )
t (T , λ, u, v) ,

which in view of first part of the hypotheses (i) implies that

�


S, T ;

p∑
i=1

ui [DFi (T ) − λi DGi (T )] +
∑
t∈K

∑
j∈Jt

v j DHj (T )


< − ρ d2 (θ (S, T )) . (5.4)

As for each t ∈ M\K ,−∑t∈M\K βt (S, T ) �t (S, v) � 0, and hence the second part of the
hypotheses a (i) implies that

�


S, T ;

∑
t∈M\K

∑
j∈Jt

v j DHj (T )


 � −σ d2 (θ (S, T )) . (5.5)

Now from (5.4), (5.5), a (ii) and sublinearity, we get

�


S, T ;

p∑
i=1

ui [DFi (T ) − λi DGi (T )] +
m∑

j=1

v j DHj (T )


 < − (ρ + σ) d2 (θ (S, T ))

< 0,
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which contradicts (5.1). Hence, φ (S) ≡
(

F1 (S)

G1 (S)
,

F2 (S)

G2 (S)
, . . . ,

Fp (S)

G p (S)

)
� λ.

Proofs of parts (b) and (c) are similar to that of part (a). ��
Theorem 5.2 Strong Duality. Let S∗be a regular efficient solution of (P), let �(S, S∗;
DF (S∗)) = ∑n

k=1

〈
Dk F (S∗) , χSk − χS∗

k

〉
for any differentiable function F : �n → R

and S ∈ �n, and assume that any one of the three sets of hypotheses specified in Theorem
5.1 holds for all feasible solutions of (DIII). Then there exist u∗ ∈ U and v∗ ∈ Rm+ such that
(S∗, u∗, v∗) is an efficient solution of (DIII) and the objective values of (P) and (DIII) are
same.

Proof By Theorem 2.1, there exist u∗ ∈ U and v∗ ∈ Rm+ such that (S∗, u∗, v∗) is an feasible
solution of (DIII). That it is an efficient solution follows from Theorem 5.1. ��

6 Dual model IV

In this section, we investigate the following dual model for (P), which may be written as the
semi-parametric counterpart of (DI):

Maximize

(
F1 (T )

G1 (T )
, . . . ,

Fp (T )

G p (T )

)
(DIV)

subject to

�


S, T ;

p∑
i=1

ui [Gi (T ) DFi (T ) − Fi (T ) DGi (T )] +
m∑

j=1

v j DHj (T )


 � 0,∀S ∈ �n,

(6.1)

v j H j (T ) � 0, t ∈ m, (6.2)

T ∈ �n, u ∈ U, v ∈ Rm+,

where �(S, T ; ·) : Ln
1 (X,�,µ) → R is a sublinear function. In the remaining part of this pa-

per, we assume that Gi (T ) > 0 and Fi (T ) � 0, i ∈ p, for all T and u such that (T, u, v) is
a feasible solution of the dual problem under consideration. In addition, in the statements
and proofs of theorems to follow in this section, we use the notations, Ei (·, T, u), B j (·, v)

and Li (·, T, u, v) defined for fixed S, u, and v on �n by

Ei (S , T, u) = ui �Gi (T ) Fi (S) − Fi (T ) Gi (S)� , ∀ i ∈ p ,

Bi (S , v) = v j H j (S) , j ∈ m ,

and

Li (S , T, u, v) = ui


Gi (T ) Fi (S) − Fi (T ) Gi (S) +

∑
j∈J0

v j H j (S)


 , i ∈ p.

Now we establish weak, strong and strict converse duality theorem for (P) and (DIV).

Theorem 6.1 Weak Duality. Let S and (T, u, v) be arbitrary feasible solutions for (P) and
(DIV), respectively, and assume that any one of the following three sets of hypotheses is
satisfied:
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(a) (i)
(
Ei , B j

)
, ∀i ∈ p, and ∀ j ∈ m are (�, α, β, ρ, σ , θ)-V-pseudo-quasi-type-I at T ;

(ii) ρ + σ � 0;
(b) (i)

(
Ei (· , T, u) , B j (·, v)

) ∀ i ∈ p and j ∈ m, are (�, α, β, ρ, σ , θ)-V-pseudo-pre-
strict-quasi-type-I at T ;
(ii) ρ + σ > 0;

(c) (i)
(
Ei (· , T, u) , B j (·, v)

) ∀ i ∈ p and j ∈ m, are (�, α, β, ρ, σ , θ)-V-prestrict-quasi-
strict-pseudo-type-I at T ;
(ii) ρ + σ � 0.

Then,

(
F1 (S)

G1 (S)
,

F2 (S)

G2 (S)
, . . . ,

Fp (S)

G p (S)

)
�

(
F1 (T )

G1 (T )
,

F2 (T )

G2 (T )
, . . . ,

Fp (T )

G p (T )

)
.

Proof Let S be an arbitrary feasible solution of (P). Then by the sublinearity of �and (6.1),
it follows that

�

(
S, T ;

p∑
i=1

ui [Gi (T ) DFi (T )−Fi (T ) DGi (T )]

)
+ �


S, T ;

m∑
j=1

v j DHj (T )


�0. (6.3)

Following as in the proof of Theorem 3.1, from the second part of the assumption a (i) and
(6.3), we get

�

(
S, T ;

p∑
i=1

ui [Gi (T ) DFi (T ) − Fi (T ) DGi (T )]

)
� −ρ d2 (θ (S, T )) ,

which in the light of the hypotheses implies that

p∑
i=1

αi (S, T ) ui [Gi (T ) Fi (S) − Fi (T ) Gi (S)] �
p∑

i=1

αi (S, T ) ui [Gi (T ) Fi (T )

−Fi (T ) Gi (T )] = 0. (6.4)

Since αi (S, T ) ui>0 for each i∈p,(6.4) implies that (G1 (T ) F1 (S) − F1 (T ) G1 (S) , . . . ,

G p (T ) Fp (S) − Fp (T ) G p (S)
)

� (0, . . . , 0) , which in turn implies that

(
F1 (S)

G1 (S)
,

F2 (S)

G2 (S)
, . . . ,

Fp (S)

G p (S)

)
�

(
F1 (T )

G1 (T )
,

F2 (T )

G2 (T )
, . . . ,

Fp (T )

G p (T )

)
.

Proofs of parts (b) and (c) are similar to that of part (a). ��

Theorem 6.2 Strong Duality. Let S∗be a regular efficient solution of (P), let �(S, S∗;
DF (S∗)) = ∑n

k=1

〈
Dk F (S∗) , χSk − χS∗

k

〉
for any differentiable function F : �n → R

and S ∈ �n, and assume that ant one of the three sets of hypotheses specified in Theorem
6.1 holds for all feasible solutions of (DIV). Then there exist u∗ ∈ U and v∗ ∈ Rm+ such that
(S∗, u∗, v∗) is an efficient solution of (DIV) and the objective values of (P) and (DIV) are
same.

Proof By Theorem 2.2, there exist u∗ ∈ U and v∗ ∈ Rm+ such that (S∗, u∗, v∗) is an feasible
solution of (DIV). That it is an efficient solution follows from Theorem 6.1. ��
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7 Dual model V

In this section, we present a more general semi-parametric dual model for (P):

Maximize

(
F1 (T ) +∑

j∈J0
v j H j (T )

G1 (T )
, . . . ,

Fp (T ) +∑
j∈J0

v j H j (T )

G p (T )

)
(DV)

subject to

�


S, T ;

p∑
i=1

ui


Gi (T )

[
DFi (T ) + ∑

j∈J0

v j DHj (T )

]

− [Fi (T ) + �0 (T, v)] DGi (T )


+

m∑
j∈m \J0

v j DHj (T )


� 0,

∀ S ∈ �n,

∑
j∈Jt

v j H j (T ) � 0, t ∈ m ∪ {0} , (7.1)

T ∈ �n, u ∈ U, v ∈ Rm+, (7.2)

where �(S, T ; ·) : Ln
1 (X,�,µ) → R is a sublinear function. In addition, in the statements

and proofs of theorems to follow in this section, we use the following notation defined for
fixed S, u, and v on �n by:

�i (S , T, u, v)= ui


Gi (T )


Fi (S)+

∑
j∈J0

v j DHj (S)


−{Fi (T ) + �0 (T, v)} Gi (S)


 ,

∀, i ∈ p

Theorem 7.1 Weak Duality. Let Sand (T, u, v) be arbitrary feasible solutions for (P) and
(DV), respectively, and assume that any one of the following three sets of hypotheses is
satisfied:

(a) (i)
(
�i (·, T, v) , � j (·, v)

)
, ∀ i ∈ p , and ∀ j ∈ m are (�, α, β, ρ, σ , θ)-V-pseudo-

quasi-type-I at T ;
(ii) (ii) ρ + σ � 0;

(b) (i)
(
�i (·, T, v) ,� j (·, v)

)
, ∀i ∈ p , and ∀ j ∈ m are (�, α, β, ρ, σ , θ)-V-pseudo-

prestrict-quasi-type-I at T ;
(ii) ρ + σ > 0;

(c) (i)
(
�i (·, T, v) , � j (·, v)

)
, ∀ i ∈ p , and ∀ j ∈ m are (�, α, β, ρ, σ , θ)-V-pre-

strict-quasi-strict-pseudo-type-I at T ;
(ii) ρ + σ � 0.

Then, (
F1 (S)

G1 (S)
,

F2 (S)

G2 (S)
, . . . ,

Fp (S)

G p (S)

)

�

(
F1 (T ) +∑

j∈J0
v j H j (T )

G1 (T )
,

F2 (T ) + ∑
j∈J0

v j H j (T )

G2 (T )
,

. . . ,
Fp (T ) +∑

j∈J0
v j H j (T )

G p (T )

)
.
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Proof (a) Let S be an arbitrary feasible solution of (P). Then by the sublinearity of �and
(7.1), it follows that

�


S, T ;

p∑
i=1

ui


Gi (T )


DFi (T )+

∑
j∈J0

v j DHj (T )


− {Fi (T )+�0 (T, v)} DGi (T )






+�


S, T ;

m∑
t=1

∑
j∈Jt

v j DHj (T )


�0. (7.3)

Following as in the proof of Theorem 3.1, from the second part of the assumption a (i) and
(7.3), we get

�


S, T ;

p∑
i=1

ui


Gi (T )


DFi (T )+

∑
j∈J0

v j DHj (T )


−{Fi (T ) + �0 (T, v)} DGi (T )






� −ρ d2 (θ (S, T )) ,

which in the light of the hypotheses implies that

p∑
i=1

αi (S, T )�i (S, T, u, v) �
p∑

i=1

αi (S, T )�i (T, T, u, v) = 0. (7.4)

The equality holds due to the fact that �i (T, T, u, v) = 0 . Since αi (S, T ) ui > 0 for each
i ∈ p,(7.4) implies that

(
G1 (T ) F1 (S) − [F1 (T ) + �0 (T, v)] G1 (S) , . . . , G p (T ) Fp (S)

− �Fp (T ) + �0 (T, v)�G p (S)
)

� (0, . . . , 0) ,

which in turn implies that
(

F1 (S)

G1 (S)
,

F2 (S)

G2 (S)
, . . . ,

Fp (S)

G p (S)

)

�




F1 (T ) + ∑
j∈J0

v j H j (T )

G1 (T )
,

F2 (T ) + ∑
j∈J0

v j H j (T )

G2 (T )
, . . . ,

Fp (T ) + ∑
j∈J0

v j H j (T )

G p (T )


 .

Proofs of parts (b) and (c) are similar to that of part (a). ��

Theorem 7.2 Strong Duality. Let S∗be a regular efficient solution of (P), let �(S, S∗;
DF (S∗)) = ∑n

k=1

〈
Dk F (S∗) , χSk − χS∗

k

〉
for any differentiable function F :�n → R and

S ∈ �n, and assume that any one of the three sets of hypotheses specified in Theorem 7.1 holds
for all feasible solutions of (DV). Then there exist u∗∈U and v∗∈Rm+ such that (S∗, u∗, v∗ )

is an efficient solution of (DV) and the objective values of (P) and (DV) are same.

Proof By Theorem 2.2, there exist u∗∈U and v∗∈Rm+ such that (S∗, u∗, v∗ ) is a feasible
solution of (DV), using the arguments as in the proof of Theorem 9.2 [42]. That it is an
efficient solution follows from Theorem 7.1. ��
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8 Dual model VI

In this section, we discuss another general dual model for (P) which may be viewed as the
semi-parametric version of (DIII). It can be stated as follows:

Maximize

(
F1 (T )

G1 (T )
, . . . ,

Fp (T )

G p (T )

)
(DVI)

subject to

�


S, T ;

p∑
i=1

ui [Gi (T ) DFi (T ) − Fi (T ) DGi (T )] +
m∑

j=1

v j DHj (T )




� 0,∀ S ∈ �n, (8.1)

∑
j∈Jt

v j H j (T ) � 0, t ∈ m ∪ {0} , (8.2)

T ∈ �n, u ∈ U, v ∈ Rm+,

where �(S, T ; ·) : Ln
1 (X,�,µ) → R is a sublinear function.

Next, we shall show that (DVI) is a dual problem to (P) by proving weak and strong duality
theorems.

Theorem 8.1 Weak Duality. Let S and (T, u, v) be arbitrary feasible solutions for (P) and
(DVI), respectively, and assume that any one of the following three sets of hypotheses is
satisfied:

(a) (i)
(
�i (·, T, v) , � j (·, v)

)
, ∀i ∈ {1, . . . , k} and ∀ j ∈ {k + 1, . . . , m} are (�, α,β,

ρ, σ , θ)-V-pseudo-quasi-type-I at T ;
(ii) (ii) ρ + σ � 0;

(b) (i)
(
�i (·, T, v) , � j (·, v)

)
, ∀ i ∈ {1, . . . , k} and ∀ j ∈ {k + 1, . . . , m} are (�, α,

β, ρ, σ , θ)-V-pseudo-prestrict-quasi-type-I at T ;
(ii) ρ + σ > 0;

(c) (i)
(
�i (·, T, v) , � j (·, v)

)
, ∀ i ∈ {1, . . . , k} and ∀ j ∈ {k + 1, . . . , m} are (�, α,

β, ρ, σ , θ)-V-prestrict-quasi-strict-pseudo-type-I at T ;
(ii) ρ + σ � 0.

Then,

(
F1 (S)

G1 (S)
,

F2 (S)

G2 (S)
, . . . ,

Fp (S)

G p (S)

)
�

(
F1 (T )

G1 (T )
,

F2 (T )

G2 (T )
, . . . ,

Fp (T )

G p (T )

)
.

Proof The proof can be done following the discussions above in this paper and the proof of
the Theorem 10.1 [42]. ��
Theorem 8.2 Strong Duality. Let S∗be a regular efficient solution of (P), let �(S, S∗;
DF (S∗)) = ∑n

k=1

〈
Dk F (S∗) , χSk − χS∗

k

〉
for any differentiable function F :�n → R and

S ∈ �n, and assume that any one of the three sets of hypotheses specified in Theorem 8.1 holds
for all feasible solutions of (DVI). Then there exist u∗∈U and v∗∈Rm+ such that (S∗, u∗, v∗ )

is an efficient solution of (DVI) and the objective values of (P) and (DVI) are same.

Proof By Theorem 2.2, there exist u∗∈U and v∗∈Rm+ such that (S∗, u∗, v∗ ) is an feasible
solution of (DVI). That it is an efficient solution follows from Theorem 8.1. ��
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9 Conclusion

In this paper, we have established various duality theorems for (P) and six different types of
dual models to (P) under generalized (F, α, β, ρ, σ , θ )-V-type-I and related non-convex func-
tions for a multiobjective fractional subset programming problem. These duality results are
extension of corresponding results to the case of more general class of functions as compared
to that of Zalmai [41]. This work can be further extended to the class of functions introduced
recently, by Hachimi and Aghezzaf [6].
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